Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.250
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612726

RESUMO

Medulloblastoma (MB) is a highly malignant childhood brain tumor. Group 3 MB (Gr3 MB) is considered to have the most metastatic potential, and tailored therapies for Gr3 MB are currently lacking. Gr3 MB is driven by PRUNE-1 amplification or overexpression. In this paper, we found that PRUNE-1 was transcriptionally regulated by lysine demethylase LSD1/KDM1A. This study aimed to investigate the therapeutic potential of inhibiting both PRUNE-1 and LSD1/KDM1A with the selective inhibitors AA7.1 and SP-2577, respectively. We found that the pharmacological inhibition had a substantial efficacy on targeting the metastatic axis driven by PRUNE-1 (PRUNE-1-OTX2-TGFß-PTEN) in Gr3 MB. Using RNA seq transcriptomic feature data in Gr3 MB primary cells, we provide evidence that the combination of AA7.1 and SP-2577 positively affects neuronal commitment, confirmed by glial fibrillary acidic protein (GFAP)-positive differentiation and the inhibition of the cytotoxic components of the tumor microenvironment and the epithelial-mesenchymal transition (EMT) by the down-regulation of N-Cadherin protein expression. We also identified an impairing action on the mitochondrial metabolism and, consequently, oxidative phosphorylation, thus depriving tumors cells of an important source of energy. Furthermore, by overlapping the genomic mutational signatures through WES sequence analyses with RNA seq transcriptomic feature data, we propose in this paper that the combination of these two small molecules can be used in a second-line treatment in advanced therapeutics against Gr3 MB. Our study demonstrates that the usage of PRUNE-1 and LSD1/KDM1A inhibitors in combination represents a novel therapeutic approach for these highly aggressive metastatic MB tumors.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Histona Desmetilases/genética , Epigênese Genética , Microambiente Tumoral
2.
Clin Epigenetics ; 16(1): 51, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576048

RESUMO

BACKGROUND: The intriguing connection between selenium and cancer resembles a captivating puzzle that keeps researchers engaged and curious. While selenium has shown promise in reducing cancer risks through supplementation, its interaction with epigenetics in cervical cancer remains a fascinating yet largely unexplored realm. Unraveling the intricacies of selenium's role and its interaction with epigenetic factors could unlock valuable insights in the battle against this complex disease. RESULT: Selenium has shown remarkable inhibitory effects on cervical cancer cells in various ways. In in vitro studies, it effectively inhibits the proliferation, migration, and invasion of cervical cancer cells, while promoting apoptosis. Selenium also demonstrates significant inhibitory effects on human cervical cancer-derived organoids. Furthermore, in an in vivo study, the administration of selenium dioxide solution effectively suppresses the growth of cervical cancer tumors in mice. One of the mechanisms behind selenium's inhibitory effects is its ability to inhibit histone demethylases, specifically JMJD3 and UTX. This inhibition is observed both in vitro and in vivo. Notably, when JMJD3 and UTX are inhibited with GSK-J4, similar biological effects are observed in both in vitro and in vivo models, effectively inhibiting organoid models derived from cervical cancer patients. Inhibiting JMJD3 and UTX also induces G2/M phase arrest, promotes cellular apoptosis, and reverses epithelial-mesenchymal transition (EMT). ChIP-qPCR analysis confirms that JMJD3 and UTX inhibition increases the recruitment of a specific histone modification, H3K27me3, to the transcription start sites (TSS) of target genes in cervical cancer cells (HeLa and SiHa cells). Furthermore, the expressions of JMJD3 and UTX are found to be significantly higher in cervical cancer tissues compared to adjacent normal cervical tissues, suggesting their potential as therapeutic targets. CONCLUSIONS: Our study highlights the significant inhibitory effects of selenium on the growth, migration, and invasion of cervical cancer cells, promoting apoptosis and displaying promising potential as a therapeutic agent. We identified the histone demethylases JMJD3 and UTX as specific targets of selenium, and their inhibition replicates the observed effects on cancer cell behavior. These findings suggest that JMJD3 and UTX could be valuable targets for selenium-based treatments of cervical cancer.


Assuntos
Selênio , Neoplasias do Colo do Útero , Feminino , Humanos , Animais , Camundongos , Selênio/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Metilação de DNA , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases/genética
3.
Free Radic Biol Med ; 217: 48-59, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527695

RESUMO

The transcription factor NRF2 plays a pivotal role in maintaining redox and metabolic homeostasis by orchestrating oxidative stress-dependent transcription programs. Despite growing evidence implicating various cellular components in the regulation of NRF2 activity at the posttranslational stage, relatively less is known about the factors dictating the transcriptional activation of NRF2 in response to oxidative stress. In this study, we report the crucial roles of MLL1, an H3K4-specific methyltransferase, and UTX, an H3K27-specific histone demethylase, in the NRF2-dependent transcription program under oxidative stress. We find that the depletion of MLL1 or UTX results in increased susceptibility to oxidative stress, accompanied by higher intracellular ROS and the failed activation of antioxidant genes, including NRF2. In addition, MLL1 and UTX selectively target the NRF2 promoter, and exogenous FLAG-NRF2 expression increases the viability of MLL1-or UTX-depleted cells upon exposure to hydrogen peroxide. RNA-seq analysis demonstrates that depletion of MLL1 or UTX affects the changes in NRF2-dependent transcriptome in response to oxidative stress. Furthermore, ChIP and ChIP-seq analyses find that MLL1 and UTX functionally cooperate to establish a chromatin environment that favors active transcription at the H3K4me3/H3K27me3 bivalent NRF2 promoter in response to ROS-induced oxidative stress. Collectively, these findings provide a molecular mechanism underlying the cellular response to oxidative stress and highlight the importance of the chromatin structure and function in maintaining redox homeostasis.


Assuntos
Histona Desmetilases , Fator 2 Relacionado a NF-E2 , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Metilação , Cromatina , Estresse Oxidativo
4.
Commun Biol ; 7(1): 374, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548886

RESUMO

The transcription factor Growth Factor Independence 1B (GFI1B) recruits Lysine Specific Demethylase 1 A (LSD1/KDM1A) to stimulate gene programs relevant for megakaryocyte and platelet biology. Inherited pathogenic GFI1B variants result in thrombocytopenia and bleeding propensities with varying intensity. Whether these affect similar gene programs is unknow. Here we studied transcriptomic effects of four patient-derived GFI1B variants (GFI1BT174N,H181Y,R184P,Q287*) in MEG01 megakaryoblasts. Compared to normal GFI1B, each variant affected different gene programs with GFI1BQ287* uniquely failing to repress myeloid traits. In line with this, single cell RNA-sequencing of induced pluripotent stem cell (iPSC)-derived megakaryocytes revealed a 4.5-fold decrease in the megakaryocyte/myeloid cell ratio in GFI1BQ287* versus normal conditions. Inhibiting the GFI1B-LSD1 interaction with small molecule GSK-LSD1 resulted in activation of myeloid genes in normal iPSC-derived megakaryocytes similar to what was observed for GFI1BQ287* iPSC-derived megakaryocytes. Thus, GFI1B and LSD1 facilitate gene programs relevant for megakaryopoiesis while simultaneously repressing programs that induce myeloid differentiation.


Assuntos
Hematopoese , Megacariócitos , Humanos , Megacariócitos/metabolismo , Diferenciação Celular/genética , Hematopoese/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo
5.
Nat Commun ; 15(1): 2165, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461301

RESUMO

The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.


Assuntos
Neoplasias , Estruturas R-Loop , RNA Longo não Codificante , Homeostase do Telômero , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , 60422 , RNA Longo não Codificante/genética , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero/genética , Humanos
6.
Nat Commun ; 15(1): 1781, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453932

RESUMO

Kdm1a is a histone demethylase linked to intellectual disability with essential roles during gastrulation and the terminal differentiation of specialized cell types, including neurons, that remains highly expressed in the adult brain. To explore Kdm1a's function in adult neurons, we develop inducible and forebrain-restricted Kdm1a knockouts. By applying multi-omic transcriptome, epigenome and chromatin conformation data, combined with super-resolution microscopy, we find that Kdm1a elimination causes the neuronal activation of nonneuronal genes that are silenced by the polycomb repressor complex and interspersed with active genes. Functional assays demonstrate that the N-terminus of Kdm1a contains an intrinsically disordered region that is essential to segregate Kdm1a-repressed genes from the neighboring active chromatin environment. Finally, we show that the segregation of Kdm1a-target genes is weakened in neurons during natural aging, underscoring the role of Kdm1a safeguarding neuronal genome organization and gene silencing throughout life.


Assuntos
Cromatina , Histona Desmetilases , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Cromatina/genética , Neurônios/metabolismo
7.
Eur J Endocrinol ; 190(2): 173-181, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38330165

RESUMO

IMPORTANCE: A paradoxical increase of growth hormone (GH) following oral glucose load has been described in ∼30% of patients with acromegaly and has been related to the ectopic expression of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) in somatotropinomas. Recently, we identified germline pathogenic variants and somatic loss of heterozygosity of lysine demethylase 1A (KDM1A) in patients with GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome. The ectopic expression of GIPR in both adrenal and pituitary lesions suggests a common molecular mechanism. OBJECTIVE: We aimed to analyze KDM1A gene sequence and KDM1A and GIPR expressions in somatotroph pituitary adenomas. SETTINGS: We conducted a cohort study at university hospitals in France and in Italy. We collected pituitary adenoma specimens from acromegalic patients who had undergone pituitary surgery. We performed targeted exome sequencing (gene panel analysis) and array-comparative genomic hybridization on somatic DNA derived from adenomas and performed droplet digital PCR on adenoma samples to quantify KDM1A and GIPR expressions. RESULTS: One hundred and forty-six patients with sporadic acromegaly were studied; 72.6% presented unsuppressed classical GH response, whereas 27.4% displayed a paradoxical rise in GH after oral glucose load. We did not identify any pathogenic variant in the KDM1A gene in the adenomas of these patients. However, we identified a recurrent 1p deletion encompassing the KDM1A locus in 29 adenomas and observed a higher prevalence of paradoxical GH rise (P = .0166), lower KDM1A expression (4.47 ± 2.49 vs 8.56 ± 5.62, P < .0001), and higher GIPR expression (1.09 ± 0.92 vs 0.43 ± 0.51, P = .0012) in adenomas from patients with KDM1A haploinsufficiency compared with those with 2 KDM1A copies. CONCLUSIONS AND RELEVANCE: Unlike in GIP-dependent primary bilateral macronodular adrenal hyperplasia, KDM1A genetic variations are not the cause of GIPR expression in somatotroph pituitary adenomas. Recurrent KDM1A haploinsufficiency, more frequently observed in GIPR-expressing adenomas, could be responsible for decreased KDM1A function resulting in transcriptional derepression on the GIPR locus.


Assuntos
Acromegalia , Adenoma , Adenoma Hipofisário Secretor de Hormônio do Crescimento , Hormônio do Crescimento Humano , Neoplasias Hipofisárias , Somatotrofos , Humanos , Neoplasias Hipofisárias/patologia , Acromegalia/metabolismo , Somatotrofos/metabolismo , Somatotrofos/patologia , Hibridização Genômica Comparativa , Hiperplasia/patologia , Estudos de Coortes , Genótipo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Adenoma/patologia , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento/metabolismo , Glucose , Histona Desmetilases/genética , Histona Desmetilases/metabolismo
8.
J Exp Clin Cancer Res ; 43(1): 44, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326863

RESUMO

BACKGROUND: m6A modification is currently recognized as a major driver of RNA function that maintains cancer cell homeostasis. Long non-coding (Lnc) RNAs control cell proliferation and play an important role in the occurrence and progression of colorectal cancer (CRC). ZCCHC4 is a newly discovered m6A methyltransferase whose role and mechanism in tumors have not yet been elucidated. METHODS: The EpiQuik m6A RNA methylation kit was used to detect the level of total RNA m6A in six types of digestive tract tumors. The Kaplan-Meier method and receiver operating characteristic curve were used to evaluate the prognostic and diagnostic value of the newly discovered m6A methyltransferase, ZCCHC4, in CRC. The effects on CRC growth in vitro and in vivo were studied using gain- and loss-of-function experiments. The epigenetic mechanisms underlying ZCCHC4 upregulation in CRC were studied using RIP, MeRIP-seq, RNA pull-down, and animal experiments. RESULTS: We reported that the ZCCHC4-LncRNAGHRLOS-KDM5D axis regulates the growth of CRC in vitro and in vivo. We found that ZCCHC4 was upregulated in primary CRC samples and could predict adverse clinical outcomes in patients with CRC. Mechanistically, ZCCHC4 downregulated LncRNAGHRLOS to promote CRC tumorigenesis. As a downstream molecule of LncRNAGHRLOS, KDM5D directly controls CRC cell proliferation, migration, and invasion. CONCLUSION: This study suggests that the ZCCHC4 axis contributes to the tumorigenesis and progression of CRC and that ZCCHC4 may be a potential biomarker for this malignancy.


Assuntos
Adenina , Neoplasias Colorretais , RNA Longo não Codificante , Animais , Humanos , Adenina/análogos & derivados , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/patologia , Regulação para Baixo , Epigênese Genética , Histona Desmetilases/genética , Metiltransferases/metabolismo , Antígenos de Histocompatibilidade Menor , RNA , RNA Longo não Codificante/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
9.
Nature ; 627(8004): 594-603, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383780

RESUMO

Although KDM5C is one of the most frequently mutated genes in X-linked intellectual disability1, the exact mechanisms that lead to cognitive impairment remain unknown. Here we use human patient-derived induced pluripotent stem cells and Kdm5c knockout mice to conduct cellular, transcriptomic, chromatin and behavioural studies. KDM5C is identified as a safeguard to ensure that neurodevelopment occurs at an appropriate timescale, the disruption of which leads to intellectual disability. Specifically, there is a developmental window during which KDM5C directly controls WNT output to regulate the timely transition of primary to intermediate progenitor cells and consequently neurogenesis. Treatment with WNT signalling modulators at specific times reveal that only a transient alteration of the canonical WNT signalling pathway is sufficient to rescue the transcriptomic and chromatin landscapes in patient-derived cells and to induce these changes in wild-type cells. Notably, WNT inhibition during this developmental period also rescues behavioural changes of Kdm5c knockout mice. Conversely, a single injection of WNT3A into the brains of wild-type embryonic mice cause anxiety and memory alterations. Our work identifies KDM5C as a crucial sentinel for neurodevelopment and sheds new light on KDM5C mutation-associated intellectual disability. The results also increase our general understanding of memory and anxiety formation, with the identification of WNT functioning in a transient nature to affect long-lasting cognitive function.


Assuntos
Cognição , Embrião de Mamíferos , Desenvolvimento Embrionário , Histona Desmetilases , Via de Sinalização Wnt , Animais , Humanos , Camundongos , Ansiedade , Cromatina/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Memória , Camundongos Knockout , Mutação , Neurogênese/genética , Via de Sinalização Wnt/efeitos dos fármacos
10.
Cell Death Dis ; 15(2): 136, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346941

RESUMO

Histone methylation plays a crucial role in various cellular processes. We previously reported the in vitro function of histone lysine demethylase 7 A (KDM7A) in osteoblast and adipocyte differentiation. The current study was undertaken to investigate the physiological role of KDM7A in bone homeostasis and elucidate the underlying mechanisms. A conditional strategy was employed to delete the Kdm7a gene specifically in osterix-expressing osteoprogenitor cells in mice. The resulting mutant mice exhibited a significant increase in cancellous bone mass, accompanied by an increase in osteoblasts and bone formation, as well as a reduction in osteoclasts, marrow adipocytes and bone resorption. The bone marrow stromal cells (BMSCs) and calvarial pre-osteoblastic cells derived from the mutant mice exhibited enhanced osteogenic differentiation and suppressed adipogenic differentiation. Additionally, osteoclastic precursor cells from the mutant mice exhibited impaired osteoclast differentiation. Co-culturing BMSCs from the mutant mice with wild-type osteoclast precursor cells resulted in the inhibition of osteoclast differentiation. Mechanistic investigation revealed that KDM7A was able to upregulate the expression of fibroblast activation protein α (FAP) and receptor activator of nuclear factor κB ligand (RANKL) in BMSCs through removing repressive di-methylation marks of H3K9 and H3K27 from Fap and Rankl promoters. Moreover, recombinant FAP attenuated the dysregulation of osteoblast and adipocyte differentiation in BMSCs from Kdm7a deficient mice. Finally, Kdm7a deficiency prevented ovariectomy-induced bone loss in mice. This study establish the role of KDM7A in bone homeostasis through its epigenetic regulation of osteoblast and osteoclast differentiation. Consequently, inhibiting KDM7A may prove beneficial in ameliorating osteoporosis. KDM7A suppresses osteoblast differentiation and bone formation through. upregulating FAP expression and inactivating canonical Wnt signaling, and conversely promotes osteoclast differentiation and bone resorption through upregulating RANKL expression. These are based on its epigenetic removal of the repressive H3K9me2 and H3K27me2 marks from Fap and Rankl promoters. As a result, the expression of KDM7A in osteoprogenitor cells tends to negatively modulate bone mass.


Assuntos
Reabsorção Óssea , Histona Desmetilases com o Domínio Jumonji , Osteoclastos , Animais , Feminino , Camundongos , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular , Epigênese Genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Homeostase , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Ligante RANK/genética , Ligante RANK/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo
11.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 81-85, 2024 Jan 10.
Artigo em Chinês | MEDLINE | ID: mdl-38171564

RESUMO

OBJECTIVE: To explore the genetic basis for a pregnant woman with a history of adverse pregnancy outcomes. METHODS: A woman with an adverse history of pregnancies including one fetal demise and two induced abortions due to fetal diaphragmatic hernia and complex cardiac anomalies was selected as the study subject. Muscle tissue from the induced abortus was subjected to whole exome sequencing, and candidate variant was verified by Sanger sequencing of the couple and other family members. RESULTS: Genetic sequencing revealed that the fetus has harbored a frameshift variant of the KDM6A gene (NM_001291415.2), namely c.1228_1229del (p.Gln410GlufsTer2), which was inherited from the woman and her mother. The variant was unreported previously, and the woman was found to have short stature, sparse eyebrows in the outer third, peculiar facial features, but normal intelligence in addition with female congenital genital malformation, like incomplete vaginal septum, double cervix, double uterus, and unilateral ovary absence. mostly similar phenotypes observed in her mother. CONCLUSION: The hemizygous c.1228_1229del variant of the KDM6A gene probably underlay the abnormalities in the fetus. All findings have enabled genetic counseling for this family featuring X-linked inheritance, and the woman had given birth to a healthy girl with appropriate prevention and intervention.


Assuntos
Feto , Aconselhamento Genético , Feminino , Humanos , Gravidez , China , Histona Desmetilases/genética , Mutação , Linhagem
12.
Nat Commun ; 15(1): 828, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280853

RESUMO

Caloric Restriction (CR) has established anti-cancer effects, but its clinical relevance and molecular mechanism remain largely undefined. Here, we investigate CR's impact on several mouse models of Acute Myeloid Leukemias, including Acute Promyelocytic Leukemia, a subtype strongly affected by obesity. After an initial marked anti-tumor effect, lethal disease invariably re-emerges. Initially, CR leads to cell-cycle restriction, apoptosis, and inhibition of TOR and insulin/IGF1 signaling. The relapse, instead, is associated with the non-genetic selection of Leukemia Initiating Cells and the downregulation of double-stranded RNA (dsRNA) sensing and Interferon (IFN) signaling genes. The CR-induced adaptive phenotype is highly sensitive to pharmacological or genetic ablation of LSD1, a lysine demethylase regulating both stem cells and dsRNA/ IFN signaling. CR + LSD1 inhibition leads to the re-activation of dsRNA/IFN signaling, massive RNASEL-dependent apoptosis, and complete leukemia eradication in ~90% of mice. Importantly, CR-LSD1 interaction can be modeled in vivo and in vitro by combining LSD1 ablation with pharmacological inhibitors of insulin/IGF1 or dual PI3K/MEK blockade. Mechanistically, insulin/IGF1 inhibition sensitizes blasts to LSD1-induced death by inhibiting the anti-apoptotic factor CFLAR. CR and LSD1 inhibition also synergize in patient-derived AML and triple-negative breast cancer xenografts. Our data provide a rationale for epi-metabolic pharmacologic combinations across multiple tumors.


Assuntos
Insulinas , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Restrição Calórica , Leucemia Mieloide Aguda/patologia , Histona Desmetilases/genética , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral
13.
Sci Rep ; 14(1): 2330, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282012

RESUMO

The field of dysmorphology has been changed by the use Artificial Intelligence (AI) and the development of Next Generation Phenotyping (NGP). The aim of this study was to propose a new NGP model for predicting KS (Kabuki Syndrome) on 2D facial photographs and distinguish KS1 (KS type 1, KMT2D-related) from KS2 (KS type 2, KDM6A-related). We included retrospectively and prospectively, from 1998 to 2023, all frontal and lateral pictures of patients with a molecular confirmation of KS. After automatic preprocessing, we extracted geometric and textural features. After incorporation of age, gender, and ethnicity, we used XGboost (eXtreme Gradient Boosting), a supervised machine learning classifier. The model was tested on an independent validation set. Finally, we compared the performances of our model with DeepGestalt (Face2Gene). The study included 1448 frontal and lateral facial photographs from 6 centers, corresponding to 634 patients (527 controls, 107 KS); 82 (78%) of KS patients had a variation in the KMT2D gene (KS1) and 23 (22%) in the KDM6A gene (KS2). We were able to distinguish KS from controls in the independent validation group with an accuracy of 95.8% (78.9-99.9%, p < 0.001) and distinguish KS1 from KS2 with an empirical Area Under the Curve (AUC) of 0.805 (0.729-0.880, p < 0.001). We report an automatic detection model for KS with high performances (AUC 0.993 and accuracy 95.8%). We were able to distinguish patients with KS1 from KS2, with an AUC of 0.805. These results outperform the current commercial AI-based solutions and expert clinicians.


Assuntos
Anormalidades Múltiplas , Inteligência Artificial , Face/anormalidades , Doenças Hematológicas , Doenças Vestibulares , Humanos , Mutação , Estudos Retrospectivos , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/genética , Fenótipo , Histona Desmetilases/genética , Genótipo
14.
Adv Ther ; 41(3): 885-890, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198042

RESUMO

Immune checkpoint inhibitors (ICI) have emerged as an important therapeutic approach for patients with cancers including bladder cancer (BC). This commentary describes a recent study that demonstrated that the loss of Y chromosome (LOY) and/or loss of specific genes on Y chromosome confers an aggressive phenotype to BC because of T cell dysfunction resulting in CD8+T cell exhaustion. Loss of expression of Y chromosome genes KDM5D and UTY was similarly associated with an unfavorable prognosis in patients with BC as these genes were partially responsible for the impaired anti-tumor immunity in LOY tumors. From a clinical perspective, the study showed that tumors with LOY may be susceptible to treatment with ICIs.


Assuntos
Cromossomos Humanos Y , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Fenótipo , Prognóstico , Imunoterapia , Antígenos de Histocompatibilidade Menor/genética , Histona Desmetilases/genética
15.
J Lipid Res ; 65(3): 100513, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38295985

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease without specific Food and Drug Administration-approved drugs. Recent advances suggest that chromatin remodeling and epigenetic alteration contribute to the development of NAFLD. The functions of the corresponding molecular modulator in NAFLD, however, are still elusive. KDM1A, commonly known as lysine-specific histone demethylase 1, has been reported to increase glucose uptake in hepatocellular carcinoma. In addition, a recent study suggests that inhibition of KDM1A reduces lipid accumulation in primary brown adipocytes. We here investigated the role of KDM1A, one of the most important histone demethylases, in NAFLD. In this study, we observed a significant upregulation of KDM1A in NAFLD mice, monkeys, and humans compared to the control group. Based on these results, we further found that the KDM1A can exacerbate lipid accumulation and inflammation in hepatocytes and mice. Mechanistically, KDM1A exerted its effects by elevating chromatin accessibility, subsequently promoting the development of NAFLD. Furthermore, the mutation of KDM1A blunted its capability to promote the development of NAFLD. In summary, our study discovered that KDM1A exacerbates hepatic steatosis and inflammation in NAFLD via increasing chromatin accessibility, further indicating the importance of harnessing chromatin remodeling and epigenetic alteration in combating NAFLD. KDM1A might be considered as a potential therapeutic target in this regard.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Cromatina/genética , Histona Desmetilases/genética , Inflamação/genética , Lipídeos
16.
In Vitro Cell Dev Biol Anim ; 60(2): 115-122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286920

RESUMO

DUSP4 is a biomarker of esophageal squamous cell carcinoma (ESCC), which is responsible for the prognosis in ESCC. However, the underlying mechanism of DUSP4-regulated ESCC carcinogenesis is unknown. As a negative regulator of JNK, DUSP4 can inhibit autophagy, which contributes to tumorigenesis. This study aimed to explore the role of autophagy in DUSP4-regulated ESCC carcinogenesis. Our results showed that DUSP4 overexpression inhibited autophagy and promoted LSD1 protein expression in ESCC cells, while DUSP4 silencing showed the opposite effects. However, DUSP4 overexpression and silencing did not affect LSD1 mRNA expression. But the regulatory ability of DUSP4 overexpression on autophagy, death level, and LSD1 protein was reversed by rapamycin. In addition, DUSP4 overexpression inhibited JNK and Bcl2 phosphorylation and the dissociation of Bcl2-Beclin1 complex, while DUSP4 silencing promoted JNK and Bcl2 phosphorylation. Moreover, the regulatory ability of DUSP4 overexpression on autophagy, death, and LSD1 protein was reversed by JNK activator anisomycin. The xenograft assays also showed that DUSP4 overexpression-promoted ESCC tumor growth in vivo and LC3II and LSD1 protein expression in tumor tissues were reversed by rapamycin or anisomycin. Overall, DUSP4 inhibits Bcl2-Beclin1-autophagy signal transduction through the negative regulation of JNK, thus suppressing autophagic death and the autophagic degradation of LSD1 in ESCC, by which DUSP4 promotes ESCC carcinogenesis.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Anisomicina , Proteína Beclina-1/genética , Linhagem Celular Tumoral , Autofagia/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Estabilidade Proteica , Sirolimo/farmacologia , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
17.
RNA ; 30(4): 435-447, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38296629

RESUMO

The histone lysine demethylase KDM5B is frequently up-regulated in various human cancer cells. However, its expression and functional role in human acute myeloid leukemia (AML) cells remain unclear. Here, we found that the expression level of KDM5B is high in primary human AML cells. We have demonstrated that knocking down KDM5B leads to apoptosis and impairs proliferation in primary human AML and some human AML cell lines. We further identified miR-140-3p as a downstream target gene of KDM5B. KDM5B expression was inversely correlated with the miR-140-3p level in primary human AML cells. Molecular studies showed that silencing KDM5B enhanced H3K4 trimethylation (H3K4me3) at the promoter of miR-140-3p, leading to high expression of miR-140-3p, which in turn inhibited B-cell CLL/lymphoma 2 (BCL2) expression. Finally, we demonstrate that the defective proliferation induced by KDM5B knockdown (KD) can be rescued with the miR-140-3p inhibitor or enhanced by combining KDM5B KD with a BCL2 inhibitor. Altogether, our data support the conclusion that KDM5B promotes tumorigenesis in human AML cells through the miR-140-3p/BCL2 axis. Targeting the KDM5B/miR-140-3p/BCL2 pathway may hold therapeutic promise for treating human AML.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Repressoras/genética
18.
Arthritis Rheumatol ; 76(3): 396-410, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37800478

RESUMO

OBJECTIVE: We aimed to investigate the hypothesis that interferon (IFN)-stimulated gene (ISG) expression in systemic lupus erythematosus (SLE) monocytes is linked to changes in metabolic reprogramming and epigenetic regulation of ISG expression. METHODS: Monocytes from healthy volunteers and patients with SLE at baseline or following IFNα treatment were analyzed by extracellular flux analysis, proteomics, metabolomics, chromatin immunoprecipitation, and gene expression. The histone demethylases KDM6A/B were inhibited using glycogen synthase kinase J4 (GSK-J4). GSK-J4 was tested in pristane and resiquimod (R848) models of IFN-driven SLE. RESULTS: SLE monocytes had enhanced rates of glycolysis and oxidative phosphorylation compared to healthy control monocytes, as well as increased levels of isocitrate dehydrogenase and its product, α-ketoglutarate (α-KG). Because α-KG is a required cofactor for histone demethylases KDM6A and KDM6B, we hypothesized that IFNα may be driving "trained immune" responses through altering histone methylation. IFNα priming (day 1) resulted in a sustained increase in the expression of ISGs in primed cells (day 5) and enhanced expression on restimulation with IFNα. Importantly, decreased H3K27 trimethylation was observed at the promoters of ISGs following IFNα priming. Finally, GSK-J4 (KDM6A/B inhibitor) resulted in decreased ISG expression in SLE patient monocytes, as well as reduced autoantibody production, ISG expression, and kidney pathology in R848-treated BALB/c mice. CONCLUSION: Our study suggests long-term IFNα exposure alters the epigenetic regulation of ISG expression in SLE monocytes via changes in immunometabolism, a mechanism reflecting trained immunity to type I IFN. Importantly, it opens the possibility that targeting histone-modifying enzymes, such as KDM6A/B, may reduce IFN responses in SLE.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , Camundongos , Animais , Humanos , Ácidos Cetoglutáricos , Histonas , Epigênese Genética , Interferon Tipo I/genética , Histona Desmetilases/genética , Expressão Gênica , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo
19.
Biol Reprod ; 110(2): 391-407, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37861693

RESUMO

Paternal chromatin undergoes extensive structural and epigenetic changes during mammalian spermatogenesis, producing sperm with an epigenome optimized for the transition to embryogenesis. Lysine demethylase 6a (KDM6A, also called UTX) promotes gene activation in part via demethylation of H3K27me3, a developmentally important repressive modification abundant throughout the epigenome of spermatogenic cells and sperm. We previously demonstrated increased cancer risk in genetically wild-type mice derived from a paternal germ line lacking Kdm6a (Kdm6a cKO), indicating a role for KDM6A in regulating heritable epigenetic states. However, the regulatory function of KDM6A during spermatogenesis is not known. Here, we show that Kdm6a is transiently expressed in spermatogenesis, with RNA and protein expression largely limited to late spermatogonia and early meiotic prophase. Kdm6a cKO males do not have defects in fertility or the overall progression of spermatogenesis. However, hundreds of genes are deregulated upon loss of Kdm6a in spermatogenic cells, with a strong bias toward downregulation coinciding with the time when Kdm6a is expressed. Misregulated genes encode factors involved in chromatin organization and regulation of repetitive elements, and a subset of these genes was persistently deregulated in the male germ line across two generations of offspring of Kdm6a cKO males. Genome-wide epigenetic profiling revealed broadening of H3K27me3 peaks in differentiating spermatogonia of Kdm6a cKO mice, suggesting that KDM6A demarcates H3K27me3 domains in the male germ line. Our findings highlight KDM6A as a transcriptional activator in the mammalian male germ line that is dispensable for spermatogenesis but important for safeguarding gene regulatory state intergenerationally.


Assuntos
Histonas , Meiose , Masculino , Animais , Camundongos , Histonas/genética , Histonas/metabolismo , Sêmen/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Expressão Gênica , Mamíferos/genética
20.
Gene ; 897: 148055, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043834

RESUMO

Brain derived neurotrophic factor (BDNF) is a major neurotransmitter that controls growth and maintenance of neurons and its misregulation is linked to neurodegeneration and human diseases. Estradiol (E2) is well-known to regulate the process of differentiation and plasticity of hippocampal neurons. Here we examined the mechanisms of BDNF gene regulation under basal conditions and under stimuli such as E2. Our results demonstrated that BDNF expression is induced by E2 in vitro in HT22 cells (hippocampal neuronal cells) and in vivo (in ovariectomized mouse brain under E2-treatment). Using chromatin immunoprecipitation assay, we demonstrated that estrogen receptors (ERα, ERß) were enriched at the BDNF promoter in presence of E2. Additionally, ER-coregulators (e.g., CBP/p300, MLL3), histone acetylation, H3K4-trimethylation, and RNA polymerase II levels were also elevated at the BDNF promoter in an E2-dependent manner. Additionally, under the basal conditions (in the absence of E2), the long noncoding RNA HOTAIR and its interacting partners PRC2 and LSD1 complexes binds to the promoter of BDNF and represses its expression. HOTAIR knockdown -relieves the repression resulting in elevation of BDNF expression. Further, levels of HOTAIR-interacting partners, EZH2 and LSD1 were reduced at the BDNF promoter upon HOTAIR-knockdown revealing that HOTAIR plays a regulatory role in BDNF gene expression by modulating promoter histone modifications. Additionally, we showed that E2 induced-BDNF expression is mediated by the displacement of silencing factors, EZH2 and LSD1 at BDNF promoter and subsequent recruitment of active transcription machinery. These results reveal the mechanisms of BDNF gene regulation under the basal condition and in presence of a positive regulator such as E2 in neuronal cells.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Estradiol , RNA Longo não Codificante , Animais , Humanos , Camundongos , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular Tumoral , Estradiol/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...